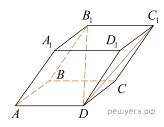
1. Укажите уравнение, не имеющее корней:

a)
$$\sqrt{x} = 5$$

$$6) \sin x = \sqrt{3}$$

$$B) \log_2 x = 4$$

$$\Gamma$$
) $2^x = 9$


2. На рисунке изображен параллелепипед $ABCDA_1B_1C_1D_1$. Углом между диагональю параллелепипеда и боковым ребром является:

$$\delta$$
) ∠ C_1DD_1

в)
$$\angle B_1DB$$

$$\Gamma$$
) $\angle B_1DC_1$

3. Решите уравнение $15^{8-5x} = \sqrt{15}$.

4. Вычислите: $16^{\log_4 3 - 1}$.

5. Упростите выражение $\left(\cos\left(\frac{5\pi}{2}-\alpha\right)-\sin\left(\alpha-\frac{\pi}{2}\right)\right)\left(\sin(\pi-\alpha)+\cos(3\pi-\alpha)\right)$ и вычислите его значение при $\alpha=-\frac{\pi}{8}.$

6. Найдите площадь полной поверхности цилиндра, если диагональ его осевого сечения, равная 8 см, составляет с образующей цилиндра угол 30°.

7. Найдите точки графика функции $f(x) = x^3 - 3x^2 + 3x$, в которых касательная к нему параллельна оси абсцисс.

8. Решите неравенство $\log_{\frac{1}{5}} \frac{x-2}{8-x} \geqslant \log_5 \frac{x}{8-x}$.

9. Решите уравнение $(x-3)^2 + 3x - 22 = \sqrt{x^2 - 3x + 7}$.

10. В правильную четырехугольную пирамиду вписан куб так, что четыре вершины куба лежат на основании пирамиды, а противоположные им вершины принадлежат боковым ребрам пирамиды. Найдите ребро куба, если высота пирамиды равна $6\sqrt{2}$ см, а сторона основания пирамиды равна $4\sqrt{2}$ см.