
1. Из перечисленных выражений укажите выражение, не имеющее смысла:

- a) $1 + \log_2 0, 7$
- 6) $\log_{\frac{3}{2}} \sqrt{2} 5$
- в) $lg 1 \sqrt{11}$
- $r) \sqrt[6]{9} \log_1 8$

2. К сфере с центром в точке O проведена касательная плоскость α (A — точка касания), точка B лежит в плоскости α .

Из перечисленных утверждений выберите верное:

- а) отрезок ОА диаметр сферы
- б) прямая ОА перпендикулярна плоскости α
- B) OB = OA
- г) прямая OB перпендикулярна плоскости α

- **3.** Упростите выражение: $a^{-1,5}$: $a^{2,5} \cdot \left(a^{\frac{1}{3}}\right)^{-6}$.
- **4.** Решите уравнение $\sqrt{9x-6} = \sqrt{x^2-6}$.
- **5.** Найдите область определения функции $f(x) = \sqrt[4]{5} + \log_5 \left(1 \frac{1}{x}\right)$.
- **6.** Диагональ основания правильной четырехугольной пирамиды равна $4\sqrt{2}$. Найдите объем данной пирамиды, если ее апофема равна $2\sqrt{5}$.
- 7. Решите уравнение $\sqrt{5} \, \mathrm{tg} \, x = 2 \sin x \, \mathrm{tg} \, x$ и найдите среднее арифметическое корней уравнения, принадлежащих промежутку $\left[-\frac{3\pi}{2}; \ 2\pi \right]$.
- **8.** Найдите уравнение касательной к графику функции $f(x) = x^2 + 2x$, параллельной прямой y = 4x 5. Найдите площадь треугольника, образованного этой касательной и осями координат.
 - **9.** Решите неравенство $(\sqrt{2}+1)^{\frac{6x-6}{x+1}} \leqslant (\sqrt{2}-1)^{-x}$.
- **10.** Основание прямой призмы равнобедренный треугольник с основанием a и углом при основании α . Диагональ боковой грани, содержащей боковую сторону треугольника, наклонена к плоскости основания под углом β . Найдите площадь боковой поверхности цилиндра, вписанного в призму.