
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Выпишите четные функции:
- a)  $y = \log_2 x$
- $6) \ \ y = \cos x$
- $\mathbf{B}) \ \ \mathbf{y} = \mathbf{tg} \, \mathbf{x}$
- 2. Разверткой боковой поверхности конуса является сектор радиуса 4 см с центральным углом 120°. Найдите площадь боковой поверхности конуса:
  - a)  $4\pi \text{ cm}^2$
  - б)  $\frac{16\pi}{3}$  cм<sup>2</sup> в)  $\frac{32\pi}{3}$  cм<sup>2</sup>

  - $\Gamma$ )  $\frac{8\pi}{3}$  cm<sup>2</sup>
  - 3. Решите неравенство  $\sqrt[3]{2-x} \le 5$ .
- **4.** К графику функции y = f(x) в точке с абсциссой  $x_0$  проведена касательная. С помощью рисунка найдите  $f'(x_0)$ .



- 5. Вычислите  $\sin\left(\frac{\pi}{3}-\alpha\right)$ , если  $\cos\alpha=-0,6,\ \pi<\alpha<\frac{3\pi}{2}$ .
- **6.** Из вершины A правильного треугольника ABC проведен к его плоскости перпендикуляр AM. Точка M соединена с точками Bи С. Двугранный угол, образованный плоскостями АВС и МВС, равен 60°. Найдите тангенс угла, образованного прямой МВ с плоскостью треугольника АВС.
  - 7. Решите уравнение  $8^{x+1} + 8^{1-x} 20 = 0$ .
  - **8.** Найдите значение выражения  $x_1^2 + x_2^2$ , где  $x_1$  и  $x_2$  корни уравнения  $x^2 (\sqrt[4]{3} + \sqrt[4]{27})x 2\sqrt{3} = 0$ .
  - 9. Решите неравенство  $\log_{7-4\sqrt{3}}(4x^2-20x+25)+\log_{2+\sqrt{3}}(x^2-x-2)\geqslant 0$ .
- 10. Боковые грани правильной треугольной призмы квадраты. Площадь боковой поверхности призмы равна 108. Найдите объем многогранника, вершинами которого являются центры всех граней призмы.